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1 Departamento de Inteligencia Artificial, Facultad de Informática
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Abstract. P systems with proteins on membranes are inspired closely
by switching protein channels. This model of membrane computing using
membrane division has been previously shown to solve an NP-complete
problem in polynomial time. In this paper we characterize the class of
problems solvable by these P systems in polynomial time and we show
that it equals PSPACE. Therefore, these P systems are computationally
equivalent (up to a polynomial time reduction) to the alternating Turing
machine or the PRAM computer. The proof technique we employ reveals
also some interesting trade-offs between certain P system properties,
as antiport rules, membrane labeling by polarization or the presence
of proteins.

1 Introduction

We continue the work on P systems with proteins on membranes, a model com-
bining membrane systems and brane calculi as introduced in [7]. We consider a
rather restrictive case, where the “main” information to process is encoded in
the multisets from the regions of a P system, but these objects evolve under the
control of a bounded number of proteins placed on membranes. Also, the rules
we use are very restrictive: move objects across membranes, under the control
of membrane proteins, changing or not the objects and/or the proteins during
these operations. In some sense, we have an extension of symport/antiport rules



[5], with the mentioning that we always use minimal rules, dealing with only one
protein, one object inside the region and/or one object outside of it.

The motivation came from the observation by several authors recently that
the maximal parallelism way of processing different species of molecules in the
membrane structure is not very close to reality, thus we are considering a model
that is limiting the parallelism through the modeling of the trans-membrane
proteins (protein channels) observed in nature. A second motivation comes from
the brane calculi in which many rules act at the level of the membrane (unlike
rules which act within the region enclosed by the membrane). In brane calculi
introduced in [3], one works only with objects – called proteins – placed on mem-
branes, while the evolution is based on membrane handling operations, such as
exocytosis, phagocytosis, etc. In the membrane computing area we have rules
associated with each region defined by a membrane, and in the recent years the
rules in membrane computing have been considered mainly to work on symbol
objects rather than other structures such as strings. The extension considered in
[7] and in [8] was to have both types of rules (both at the level of the region de-
limited by membranes and also at the level of membrane controlled by a protein).
The reason for considering both extensions was that in biology, many reactions
taking place in the compartments of living cells are controlled/catalysed by the
proteins embedded in the membranes bilayer. For instance, it is estimated that
in the animal cells, the proteins constitute about 50% of the mass of the mem-
branes, the rest being lipids and small amounts of carbohydrates. There are
several types of such proteins embedded in the membrane of the cell; one sim-
ple classification places these proteins into two classes, that of integral proteins
(these molecules can “work” in both inside the membrane as well as also in the
region outside the membrane), and that of peripheral proteins (macromolecules
that can only work in one region of the cell) – see [1].

In this paper we show that P systems with proteins on membranes can solve
in polynomial time exactly the class of problems PSPACE. Mathematically,
this property can be expressed as

M -PTIME = M -NPTIME = PSPACE, (1)

where M -(N)PTIME is the class of problems solved in polynomial time by a
(non-) deterministic machine M. (In our case, the machine M will be a P sys-
tem with proteins on membranes.) This relation is also known as the Parallel
Computation Thesis [12]. Computational devices with this property form the so-
called second machine class. Another members of this class are the alternating
Turing machine, SIMDAG (also known as SIMD PRAM) and other standard
parallel computer models [12].

The rest of the paper is organized as follows: after introducing basic concepts
used throughout the paper in Section 2, we show in Section 3 that the P systems
with proteins on membranes can solve the problem QSAT in linear time. Then
in Section 4 we show that such a P system can be simulated with a conventional
computer (and hence also with Turing machine) in a polynomial space. Section
5 concludes the paper and mentions also some open problems.
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2 Definitions

We will start by giving some preliminary notations and definitions which are
standard in the area of membrane systems. The reader is referred to [4, 9] for
an introduction and overview of membrane systems, and to [13] for the most
recent information. The membranes delimit regions precisely identified by the
membranes. In these regions we place objects — elements of the set O. Several
copies of the same object can be present in a region, so we work with multisets
of objects. For a multiset M we denote by |M |a the multiplicity of objects a
in M. A multiset M with the underlying set O can be represented by a string
x ∈ O∗ (by O∗ we denote the free monoid generated by O with respect to the
concatenation and the identity λ) such that the number of occurrences of a ∈ O
in x represents the value |M |a.

In the P systems which we consider below, we use two types of objects,
proteins and usual objects; the former are placed on the membranes, the latter
are placed in the regions delimited by membranes. The fact that a protein p is
on a membrane (with label) i is written in the form [

i
p| ]

i
. Both the regions of

a membrane structure and the membranes can contain multisets of objects and
of proteins, respectively.

We consider the types of rules introduced in [7]. In all of these rules, a, b, c, d
are objects, p is a protein, and i is a label (“res” stands for “restricted”):

Type Rule Effect
1res [

i
p|a]

i
→ [

i
p|b]

i

a[
i
p| ]

i
→ b[

i
p| ]

i
modify an object, but not move

2res [
i
p|a]

i
→ a[

i
p| ]

i

a[
i
p| ]

i
→ [

i
p|a]

i
move an object, but not modify

3res [
i
p|a]

i
→ b[

i
p| ]

i

a[
i
p| ]

i
→ [

i
p|b]

i
modify and move one object

4res a[
i
p|b]

i
→ b[

i
p|a]

i
interchange two objects

5res a[
i
p|b]

i
→ c[

i
p|d]

i
interchange and modify two objects

In all cases above, the protein is not changed, it plays the role of a catalyst,
just assisting the evolution of objects. A generalization is to allow rules of the
forms below (now, “cp” means “change protein”):

Type Rule Effect (besides changing also the protein)
1cp [

i
p|a]

i
→ [

i
p′|b]

i

a[
i
p| ]

i
→ b[

i
p′| ]

i
modify an object, but not move

2cp [
i
p|a]

i
→ a[

i
p′| ]

i

a[
i
p| ]

i
→ [

i
p′|a]

i
move an object, but not modify

3cp [
i
p|a]

i
→ b[

i
p′| ]

i

a[
i
p| ]

i
→ [

i
p′|b]

i
modify and move one object

4cp a[
i
p|b]

i
→ b[

i
p′|a]

i
interchange two objects

5cp a[
i
p|b]

i
→ c[

i
p′|d]

i
interchange and modify two objects
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where p, p′ are two proteins (possibly equal, and then we have rules of type res).
An intermediate case can be that of changing proteins, but in a restricted

manner, by allowing at most two states for each protein, p, p̄, and the rules either
as in the first table (without changing the protein), or changing from p to p̄ and
back (like in the case of bistable catalysts). Rules with such flip-flop proteins are
denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we allow both rules which
do not change the protein and rules which switch from p to p̄ and back).

Both in the case of rules of type ff and of type cp we can ask that the
proteins are always moved in their complementary state (from p into p̄ and vice
versa). Such rules are said to be of pure ff or cp type, and we indicate the use
of pure ff or cp rules by writing ffp and cpp, respectively.

To divide a membrane, we use the following type of rule, where p, p′, p′′ are
proteins (possible equal): [

i
p| ]

i
→ [

i
p′| ]

i
[
i
p′′| ]

i

The membrane i is assumed not to have any polarization and it can be non-
elementary. The rule doesn’t change the membrane label i and instead of one
membrane, at next step, will have two membranes with the same label i and
the same contents replicated from the original membrane: objects and/or other
membranes (although the rule specifies only the proteins involved).

Definition 1. A P system with proteins on membranes and membrane division
(in the sequel simply P system, if not stated otherwise) is a system of the form
Π = (O, P, µ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, io), where

m is the degree of the system (the number of membranes),
O is the set of objects, P is the set of proteins (with O ∩ P = ∅),
µ is the membrane structure,
w1, . . . , wm are the (strings representing the) multisets of objects present in the

m regions of the membrane structure µ,
z1, . . . , zm are the multisets of proteins present on the m membranes of µ,
E ⊆ O is the set of objects present in the environment (in an arbitrarily large

number of copies each),
R1, . . . , Rm are finite sets of rules associated with the m membranes of µ, and
io is the label of the output membrane.

The rules are used in the non-deterministic maximally parallel way: in each
step, a maximal multiset of rules is used, that is, no rule is applicable to the
objects and the proteins which remain unused by the chosen multiset. At each
step we have the condition that each object and each protein can be involved
in the application of at most one rule, but the membranes are not considered
as involved in the rule applications except the division rules, hence the same
membrane can appear in any number of rules of types 1–5 at the same time. By
halting computation we understand a sequence of configurations that ends with a
halting configuration (there is no rule that can be applied considering the objects
and proteins present at that moment in the system). With a halting computation
we associate a result, in the form of the multiplicity of objects present in region io
at the moment when the system halts. We denote by N(Π) the set of numbers
computed in this way by a given system Π . We denote, in the usual way, by
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NOPm(pror ;list-of-types-of-rules) the family of sets of numbers N(Π) generated
by systems Π with at most m membranes, using rules as specified in the list-
of-types-of-rules, and with at most r proteins present on a membrane. When
parameters m or r are not bounded, we use ∗ as a subscript.

Example: Consider the P system Π = (O, P, µ, w0/z0, w1/z1, E, R0, R1, i0), where

O = {a1, . . . , an}

P = {p, q}

µ = [0[1]1]0

w0 = z0 = E = ∅

w1 = {a1}

z1 = {p}

R0 = ∅

R1 = {[1p| ]1 → [1q| ]1[1q| ]1, [1q|an]1 → an[1q| ]1}

∪ {[1q|ai]1 → [1p|ai+1]1 | 1 ≤ i ≤ n− 1}

i0 = 0

Fig. 1. An example of a P system with proteins on membranes.

In its initial configuration the system contains two membranes and one ob-
ject. In every odd step all the membranes labelled 1 are divided and their
membrane proteins are changed from p to q. In every even step the proteins
change back from q to p, and objects ai in the membranes evolve to ai+1, for
1 ≤ i ≤ n−1. Therefore, every two steps the number of membranes labelled 1 is
doubled. In 2n-th step the objects an are expelled to the membrane labelled 0,
which is the output membrane, and the systems halts. The computation of the
system is illustrated in Fig. 1. Therefore, we can write that N(Π) = {2n |n ∈ N}.

Several computational universality results are known to hold for P systems
with proteins on membranes [8, 7], from which we recall only two:

NOP1(pro2; 2cpp) = NRE ,

NOP1(pro∗; 3ffp) = NRE ,
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where NRE is the class of all recursively enumerable sets of non-negative inte-
gers. In this paper, however, we focus on P systems working in accepting mode,
described in the next section, which can solve decision problems.

2.1 Families of membrane systems

Most of the membrane computing models are universal, i.e., they allow for a
construction of a universal machine capable of solving any Turing-computable
problem. However, when we try to employ the massive parallelism of P systems
for effective solutions to intractable problems, the concept of one universal P
systems solving all the instances of the problem is rather restrictive. The effective
use of parallelism can be restricted by the particular structure of such a P system.
For instance, the depth of the structure is fixed during the computation in most P
system models. But for an effective parallel solution to various instances, various
depths of the membrane structure might be needed.

Therefore, to attack intractable problems, we frequently use families of P sys-
tems instead of a single P system. Generally, given a computational problem X,
each machine Mn of the familyM = (M0, M1, . . .) is able to solve the instances
of X of size n. We denote by |xi| the size of an instance xi of a problem X. In
the usual representation xi, i = 1, 2, . . . , are words over a fixed finite alphabet
and |xi| is the length of xi. The following definition is due to [6].

Definition 2. Let D be a class of P systems and let f : N −→ N be a total
function. The class of problems solved by uniform families of P systems of type
D in time f, denoted by MCD(f), contains all problems X such that:

1. there exists a uniform family of P systems ΠX = (ΠX(1); ΠX(2); . . .) of type
D : each ΠX(n) can be constructed by a deterministic Turing machine with
input n in a time polynomial to n.

2. Each ΠX(n) is sound: ΠX(n) starting with a (properly encoded) input x ∈ X
of size n expels out a distinguished object yes if and only if the answer to x
is “yes”.

3. Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result: “yes” or “no”.

4. ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Alternatively we can consider semi-uniform families of P systems ΠX =
(ΠX(x1); ΠX(x2); . . .) whose members ΠX(xn) can be constructed by a deter-
ministic Turing machine with input xn in a polynomial time w.r.t. |xn|. In this
case, for each instance of X we have a special P system which therefore does
not need an input. The resulting class of problems is denoted by MCS

D(f). Ob-
viously, MCD(f) ⊆ MCS

D(f) for a given class D and a constructible function
f.

Particularly, we denote by

PMCD =
⋃

k∈N

MCD(O(nk)), PMCS
D =

⋃

k∈N

MCS
D(O(nk)),
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the classes of problems solvable by uniform (semi-uniform, respectively) families
of P systems in polynomial time. Let us denote by MP the class of P systems
with proteins on membranes. The following relation follows by [8] for P systems
with proteins on membranes:

NP ⊆ PMCS
MP . (2)

3 Solving QSAT in linear time

In this section we show that P systems with proteins on membranes can solve in
linear time the PSPACE-complete problem QSAT. More precisely, there exists
a semi-uniform family of these P systems such that for each instance of QSAT,
a proper P system solving that instance in a linear time can be constructed in
a polynomial time w.r.t. the size of the instance. We also observe interesting
trade-off between the use of certain elementary P systems operations.

The problem QSAT (satisfiability of quantified propositional formulas) is a
standard PSPACE-complete problem. It asks whether or not a given quanti-
fied boolean formula in the conjunctive normal form assumes the value true. A
formula as above is of the form

γ = Q1x1Q2x2 . . . Qnxn(C1 ∧C2 ∧ . . . ∧Cm), (3)

where each Qi, 1 ≤ i ≤ n, is either ∀ or ∃, and each Cj , 1 ≤ j ≤ m, is a clause
of the form of a disjunction

Cj = y1 ∨ y2 ∨ . . . ∨ yr,

with each yk being either a propositional variable, xs, or its negation, ¬xs. For
example, let us consider the propositional formula

β = Q1x1Q2x2[(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)]

It is easy to see that it is true when Q1 = ∀ and Q2 = ∃, but it is false when
Q1 = ∃ and Q2 = ∀.

The proof given below is based on the technique already employed in [10]
which deals with P systems with active membranes. However, since the function
of membrane proteins is different, the proof was substantially adapted. Notice,
e.g., that in the P systems with active membranes, the division operation is
driven by both membrane contents and polarization, while here it is controlled
solely by membrane proteins. As a result, in [10] the membrane structure divides
in the bottom-up manner, here the reverse top-down order must be employed.

Theorem 1. PSPACE ⊆ PMCS
MP .

Proof. Consider a propositional formula γ of the form (3) with

Ci = yi,1 ∨ . . . ∨ yi,pi
,
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for some pi ≥ 1, and yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.
We construct the P system

Π = (O, P, µ, w0/z0, w1/z1, . . . , wn+2/zn+2, ∅, R0, R1, . . . , Rn+2, 0)

with the components

O = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri, ri | 1 ≤ i ≤ m} ∪ {t, s},

P = {p0, p+, p−, px},

µ = [0[1 . . . [
n
[
n+1]n+1[n+2]n+2]n

. . . ]1]0,

w0 = wn+2 = λ,

wi = ai, for each i = 1, 2, . . . , n,

wn+1 = r1r2 . . . rm,

z0 = p0, z1 = px,

zi = p0, for all i = 2, . . . , n + 2.

The rules contained in the sets Ri are defined below:

In Ri, 1 ≤ i ≤ n :

[
i
px| ] i → [

i
p+| ] i[ ip−| ] i

, [
i
p+|ai] i → [

i
p+|ti] i, [

i
p−|ai] i → [

i
p−|fi] i

(4)

In Ri, 1 ≤ i ≤ n− 1 :

ti[ i+1p0| ] i+1 → [
i+1px|ti] i+1, fi[ i+1p0| ] i+1 → [

i+1px|fi] i+1 (5)

In Ri, 3 ≤ i ≤ n :

tj [ i
p0| ] i → [

i
p0|tj ] i

, fj [ ip0| ] i
→ [

i
p0|fj] i

for all j, 1 ≤ j ≤ i− 2 (6)

In Rn+1 :

ti[n+1p0|rj ]n+1 → rj [n+1p0|ti]n+1

for all i, j, 1 ≤ i ≤ n, ≤ j ≤ m such that the clause Cj contains xi
(7)

In Rn+1 :

fi[n+1p0|rj ]n+1 → rj [n+1p0|fi]n+1

for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that the clause Cj contains ¬xi
(8)

In Rn+1 :

[
n+1p0|ti]n+1 → ti[n+1p0| ]n+1, [

n+1p0|fi]n+1 → fi[n+1p0| ]n+1

for all i, 1 ≤ i ≤ n
(9)

In Rn+2 :
r1[n+2p0| ]n+2 → [

n+2p0|r1]n+2 (10)
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Fig. 2. Expansion of the initial membrane structure into a binary tree (only the first
n+1 levels shown). The symbols at nodes indicate the proteins present on membranes.

In Rn+2 :

ri+1[n+2p0|ri]n+2 → ri[n+2p0|ri+1]n+2 for all i, 1 ≤ i ≤ n− 1 (11)

In Rn+2 :
[
n+2p0|rm]

n+2 → t[
n+2p0| ]n+2 (12)

In Ri, 1 ≤ i ≤ n such that Qi = ∀ :

[
i
p−|t] i → s[

i
p−| ] i

, s[
i
p+|t] i → t[

i
p+|s] i (13)

In Ri, 1 ≤ i ≤ n such that Qi = ∃ :

[
i
p−|t] i

→ t[
i
p−| ] i, [

i
p+|t] i → t[

i
p+| ] i (14)

It is easy to check that the size of the P system Π (the number of objects,
membranes, rules, the size of the initial configuration etc.) is O(nm), n being the
number of variables and m the number of clauses. Also the system can obviously
be constructed in a polynomial (linear) time.

Initial phase of computation of the system Π is illustrated in Fig. 2. In the
first step the non-elementary membrane at level 1 is divided by the first rule in
(4) into two parts with different membrane proteins. In the next step, symbols
f1 and t1 are produced in the two resulting membranes, see the next rules in (4).
In the third step, these symbols are moved one level lower, into the membranes
labeled 2, see (5). The membrane protein on these membranes is changed to px.
This cycle is repeated n times and waves corresponding to the division by rules
(4) descend the membrane tree towards its leaves. Simultaneously, the produced
symbols ti and fi move towards the leaves of the tree thanks to the rules (6).
This phase is finished after 3n− 1 steps when the membrane structure forms a
balanced binary tree, see Fig. 2. Each of its 2n nodes at level n contains a set
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of objects {x1, x2, . . . , xn}, where xi ∈ {fi, ti}, 1 ≤ i ≤ n, such that all possible
n-tuples are present.

Second phase consists of checking whether the formula without quantifiers is
satisfied by the n-tuples of logical values (x1, x2, . . . , xn). The checking is done
for all the n-tuples in parallel. It starts by moving of those objects ri, 1 ≤ i ≤ m,
corresponding to the clauses Ci which are satisfied by a particular n-tuple, from
the membrane [

n+1]n+1 to [
n
]
n
. Rules (7)–(9) are responsible for this process.

Whenever objects r1, . . . , rm appear in membrane [
n
]
n
, another process starts

whose purpose is to check whether all ri, 1 ≤ i ≤ m, are present. This is done
by their movements to-and-from membrane [

n+2]n+2 driven by rules (10)–(12).
Eventually, object t is released into the membrane [

n
]
n
.

The application of rules of the second phase can partially overlap with the
initial phase: whenever first objects ti or fi arrive into the membrane [

n
]
n
, the

second phase starts, while remaining ti’s and fi’s can arrive later. However, the
application of the rules in the second phase described above is not altered.

Finally, third phase of computation checks whether the whole formula with
quantifiers is satisfied. Objects t move upwards the membrane structure tree,
checking at each level one quantifier ∀ or ∃. Observe that rules (13)–(14) allow
for existence of more than one symbol t per membrane (in the case of ∃) which,
however, do not alter the computation. Eventually, object t appears in membrane
0, signaling that the formula is satisfied, and the system halts.

The whole computation is performed by time linearly limited from above by
the values of n and m. More specifically, the initial phase is finished in 3n − 1
steps, the second phase takes up to 3m steps and the last phase up to 2n steps.
In total, the computation takes O(n + m) steps.

Observe that rules (5) are the only rules of type 2cp. All the rest are re-
stricted (or division) rules. Furthermore, these 2cp rules are used only to control
the membrane division process. The membrane division rules can be controlled
solely by the presence of a specific membrane protein. Assume that we intro-
duced division rules similar as in P systems with active membranes, i.e., of type
[
i
p|a]

i
→ [

i
p|b]

i
[
i
p|c]

i
, controlled by the presence of certain object in a mem-

brane. Then the rules (5) would not be needed and the whole P systems could
use only restricted and division rules.

Hence, it turns out that the only necessary purpose of membrane proteins
is the control of membrane division forced by the specific type of division rules.
If we compare our proof with that in [10], we observe that the role played in
[10] by the membrane polarization (which is in some sense generalized in the
concept of membrane proteins) is in our proof frequently replaced by the use
of antiport rules of types (4) and (5). Therefore, there is a trade-off between
membrane labeling (polarization, proteins) and antiport rules.

This suggests that from the point of view of efficiency, there is no substantial
difference between restricted and “change protein” rules. The paper [8] shows
that the universality can be reached only with the restricted rules, too. However,
there is another trade off between the number of membranes and the use of
“change protein” rules in this case.
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4 Simulation of a P system with proteins on membranes

in polynomial space

In this section we demonstrate an algorithm for simulation of P systems with
proteins on membranes which proves the relation reverse to that given in The-
orem 1. Notice that the simulated P system is confluent (hence possibly non-
deterministic), therefore the conditions of the Parallel Computation Thesis are
satisfied. However, our simulation itself is deterministic – at each step we simu-
late only one chosen multiset of applicable rules. Hence we simulate one possible
sequence of configurations of the P system. The algorithm of selection of the
rules to be applied corresponds to introducing a weak priority between rules: (i)
bottom-up priority between rules associated to different membranes, (ii) priority
between rules in the same membrane, given by the order in which they are listed,
including the priority between types 1–6, in this order. The confluency condition
ensures that such a simulation leads always to a correct result.

We employ the technique of reverse-time simulation which is known from the
general complexity theory when dealing with the second class machines. Instead
of simulating a computation of a P system from its initial configuration onwards
(which could require an exponential space for storing configurations), we create
the recursive function State which returns the state of any membrane h after a
given number of steps. The recursive calls evaluate contents of the membranes
interacting with h in a reverse time order (towards the initial configuration).
The key observation is that the state of the membrane is determined by its
own state, states of the embedded membranes and its parent membrane at the
previous computational step. In such a manner we do not need to store a state
of any membrane, but instead we calculate it recursively whenever it is needed.
The depth of the recursive calls is proportional to the number of steps of the
simulated P system. Furthermore, at each level of the call stack we must store
a state of a single membrane which can be done in a polynomial space. In this
way a result of any T (n)-time-bounded computation of a confluent accepting P
system with proteins on membranes can be found in a space polynomial to T (n).

Theorem 2. PMCS
MP ⊆ PSPACE.

Proof. Let Π = (O, P, µ, w1/z1, . . . , wn/zn, E, R1, . . . , Rn, i0) be a membrane
system. We define state of each membrane h of µ as a pair S = (M, Z), where M
is the multiset characterizing the contents of (the region enclosed by) membrane
h and Z is the multiset of proteins on membrane h. We use the notation S.M
and S.Z to refer to these two components of state.

The state of a membrane h at certain computational step can be computed
recursively from the state of h, the state of its parent membrane and states
of all its embedded membranes at the previous step. We take into the account
all membranes which could be possibly created by maximal membrane division
within the system. The algorithm can be described informally as follows:

– verify whether our membrane h exists at all at given computational step;
this is done by checking
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• the existence of membrane h in the previous step;
• a possible application of a division rule in membrane h in the previous

step;
• the existence of a parent membrane of h;

– calculate recursively the state of membrane h at the end of the previous step;
– calculate recursively previous states of all the membranes directly embedded

in h, then enumerate objects which h sends to/ receives from these mem-
branes during the given step;

– calculate recursively previous state of the parent membrane (containing h),
unless h is the skin membrane;

– simulate an application of rules of types 1–6 in membrane h during the given
step.

Special attention must be paid to the skin membrane. Recall that some ob-
jects (not present in E) can be expelled into the outer region and later eventually
return back to the system. Therefore, we must keep track of the contents of the
outer region, too. Therefore, in the algorithm we assume the existence of an
“outer membrane” at level 0, increasing the depth of the membrane structure
by 1. This virtual membrane is the parent of the skin membrane, with no rules
and no proteins assigned to it. Initially it contains infinitely many copies of ob-
jects from E, later there might appear objects from O \ E which were expelled
from the skin membrane.

We assume without loss of generality that the original labeling of membranes
of Π in µ is one-to-one. However, during the computation of Π the membranes
may be divided, keeping their original labels. Hence there may exist more mem-
branes with the same label. To identify membranes uniquely, we add to each label
an index in square brackets. Observe that in one computational step a division
may simultaneously take place at various levels (possibly all) of the membrane
structure tree. Therefore, a membrane structure of a depth n can potentially
produce O(2n) membranes in a single step, and we must be able to identify all
of them. The indices are assigned due to the following rules:

1. The skin membrane has always an empty index.
2. The index of each membrane at a nesting level k + 1 after n steps of com-

putation consists of k n-tuples of numbers 1 or 2, for k, n ≥ 0. In the initial
configuration each index is empty.

3. After each computational step, indices are extended in a top-down manner.
Consider a membrane h[i11 . . . i1(n−1), . . . , ik1 . . . ik(n−1)]. If h does not divide
at step n, digit 1 is attached to the last (n − 1)-tuple. If h is divided, the
resulting two membranes have attached 1 and 2, respectively, to their last
(n− 1)-tuples.

4. Simultaneously the same digit is attached to the k-th tuple of indices of all
sub-membranes of h.

Instead of the detailed notation of indices i11 . . . i1n, . . . , ik1 . . . ikn we will in
the sequel use also its shorter version i11 . . . ikn. The membrane indexing is
illustrated in Fig. 3. At the first step, membrane d was divided. At the second
step, the non-elementary membrane c1,1 was divided. Observe the following facts:
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Fig. 3. Example of an indexed membrane structure after two computational steps

– An index of a membrane contains as prefixes the indices of all its parent
membranes, up to the skin membrane.

– The parent membrane of h[i11 . . . ikn] has always the index i11 . . . i(k−1)n.
– A membrane h[i11 . . . ikn] evolved from membrane h[i11 . . . ik(n−1)] at n-th

step of computation.
– Given an initial membrane structure µ and a number n ≥ 0, we can ef-

fectively enumerate all the membranes which could potentially exist in µ
after n steps. Certain indices can denote membranes non-existing due to
non-application of membrane division rules.

Now we describe the function State which computes the state of any mem-
brane h of Π at a given step of computation.

Function State

Parameters: h[i11 . . . ikn]

Local variables:
S – state of the membrane h[i11 . . . ik(n−1)],
S′ – state of the membrane h[i11 . . . ikn)],
T – state of the parent membrane of h[i11 . . . ik(n−1)],
T ′ – state of the parent membrane of h[i11 . . . ikn],

1. If n = 0 then return the state of membrane h in the initial configuration and
exit.

2. If k > 0 (i.e. h is not the virtual “outer membrane”), then
/* We check the existence of membrane h[i11 . . . ikn] */

(a) T ← State(Parent(h[i11 . . . ikn]))
/* We calculate the state of the parent membrane of h[i11 . . . ikn]*/

(b) If T = nil then return nil and exit.
/* If the parent membrane does not exist, neither does its child h[i11 . . . ikn]
exist. */
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(c) S ← State(h[i11 . . . ik(n−1)])

(d) If S = nil then return nil and exit.
/* If membrane h[i11 . . . ik(n−1)] did not exist after (n − 1) steps, then
after n steps its successor h[i11 . . . ikn] cannot exist. */

3. T ′ ← (∅, ∅), S′ ← (∅, ∅)

4. Contribution from children(h[i11 . . . ikn], S, S′)

5. If k = 0 then T ← (∅, ∅) else T ← State(Parent(h[i11 . . . ik(n−1)])).
/* We calculate a state of the parent membrane at (n− 1)-th step. */

6. /* Now we simulate the evolution of membrane h[i11 . . . ik(n−1)] at n-th step.
*/

(a) Try rules 1(h, S, S′, T, T ′)

(b) Try rules 2(h, S, S′, T, T ′)

(c) Try rules 3(h, S, S′, T, T ′)

(d) Try rules 4(h, S, S′, T, T ′)

(e) Try rules 5(h, S, S′, T, T ′)

(f) Try rules 6(h, S, S′, ikn)

7. If ikn = 2 and a rule of type 6 was not applied, then S′ ← nil.
/* If ink = 2, then membrane h[i11 . . . ikn] could only be created by an appli-
cation of a rule of type 6 during the n-th step. If such a rule was not applied,
then h[i11 . . . ikn] does not exist. */

8. If S′ 6= nil then S′.M ← S′.M ∪ S.M, S′.Z ← S′.Z ∪ S.Z.
/* All unused objects and proteins pass unchanged to the next step. */

9. Return S′ and exit.

The following simple function just returns the parent membrane of the mem-
brane specified by a parameter, enriched with indices denoting the same com-
putational step n an the depth k − 1 of the parent membrane.

Function Parent

Parameters:
h[i11 . . . ikn] – a membrane whose parent is searched for

1. Return g[i11 . . . i(k−1)n], where g is the parent membrane of h in the initial
membrane structure µ.

The following procedure calculates the contribution of the children mem-
branes (i.e., the objects they expel) embedded in a membrane h during n-th
computational steps. The procedure is recursive since during the n-th step, the
rules are applied in the membrane structure tree in the bottom-up priority. Hence
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the rules moving objects through elementary membranes may influence objects
in the embedding membranes, which in turn influence communication rules in
membranes one level above, et cetera. Observe that, with the aid of function
State, we can uniquely determine the children (in terms of the membrane struc-
ture tree) of a given membrane h[i11 . . . ikn] existing after n− 1 computational
steps without storing the whole membrane structure of Π after (n− 1)-th step.
Procedure Contribution from children

/* Calculates the interaction of a membrane h[i11 . . . ikn] with its children mem-
branes at step n by:
– sending and receiving objects into/from children membranes by rules of type
2–5,
– modifying objects by proteins on children membranes by rules of type 1. */
Parameters:
h[i11 . . . ikn] – a membrane to which its children contribute
S – an initial state of the parent membrane
S′ – a final state of the parent membrane

Local variables: T, T ′

For each children membrane g of h in the initial membrane structure µ, and
for each n-tuple j(k+1)1 . . . j(k+1)n, j(k+1)ℓ ∈ {1, 2}, 1 ≤ ℓ ≤ n :

1. T ← State(g[i11 . . . ik(n−1), j(k+1)1 . . . j(k+1)(n−1)]), T ′ ← (∅, 0)

2. If T = nil then skip the remaining steps.

3. Contribution from children(g[i11 . . . ikn, j(k+1)1 . . . j(k+1)n], T, T ′)
/* Calculate recursively the contribution of children membranes to membrane
g[i11 . . . ikn, j(k+1)1 . . . j(k+1)n] : we have chosen to evaluate the influence of
children membranes prior to the activity of the parent membrane and we
must keep this principle on all levels of the membrane tree. */

4. Try rules 1(g, T, T ′, S, S′)

5. Try rules 2(g, T, T ′, S, S′)

6. Try rules 3(g, T, T ′, S, S′)

7. Try rules 4(g, T, T ′, S, S′)

8. Try rules 5(g, T, T ′, S, S′)

Observe that the parent of h[i11 . . . ikn] is the membrane g[i11 . . . i(k−1)n],
where g is the parent of h in the initial state. Then one can deduce that the
recursive function State is defined correctly because each recursive call during
the computation of State(h[i11 . . . ikn]) is in one of the forms

State(g[i11 . . . i(k−1)n]), (15)
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State(g[i11 . . . i(k−1)(n−1)]), (16)

State(h[i11 . . . ik(n−1)]), (17)

where d is the depth of the initial membrane structure µ. By (15)–(17), each
such call decreases the value of at least one of the parameters n, k ≥ 0.

Furthermore, in the procedure Contribution from children one needs to
evaluate State(g[i11 . . . ik(n−1), j(k+1)1 . . . j(k+1)(n−1)]). However, since k is boun-
ded from above, the resulting graph of recursive calls is acyclic and finite. See
also equations (19)–(23) which describe mathematically the structure of calls.

Finally, the following procedures evaluate a simultaneous application of a
specific type of rules in a membrane specified by a parameter. The rules can
move objects through the membrane and hence can influence also the state of
the parent membrane.

Procedures Try rules 1 – Try rules 6

/* Apply a given type of rules attached to a membrane h; remove their left-hand
sides from initial state(s) S (T ) and add their right-hand sides to final state(s)
S′ (T ′).

We treat restricted rules as a special case of the generalized ones for p = p′.*/

Parameters:
h – label of the membrane processed
S – initial state of the membrane
S′– final state of the membrane
T – initial state of the parent membrane (only rules 1–5)
T ′ – final state of the parent membrane (only rules 1–5)
i – index of a divided membrane, value 1 or 2 (only rules 6)

(1a) For each rule [
h
p|a]

h
→ [

h
p′|b]

h
in Rh :

– let j = min{|S.M |a, |S.Z|p)}
– remove j occurrences of a from S.M
– remove j occurrences of p from S.Z
– add j occurrences of b to S′.M
– add j occurrences of p′ to S′.Z

(1b) For each rule a[
h
p|]

h
→ b[

h
p′|]

h
in Rh :

– let j = min{|T.M |a, |S.Z|p)}
– remove j occurrences of a from T.M
– remove j occurrences of p from S.Z
– add j occurrences of b to T ′.M
– add j occurrences of p′ to S′.Z

(2) See (3a), (3b) since rules of type (2) can be treated as a special case of (3).
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(3a) For each rule [
h
p|a]

h
→ b[

h
p′|]

h
in Rh :

– let j = min{|S.M |a, |S.Z|p)}
– remove j occurrences of a from S.M
– remove j occurrences of p from S.Z
– add j occurrences of b to T ′.M
– add j occurrences of p′ to S′.Z

(3b) For each rule a[
h
p|]

h
→ [

h
p′|b]

h
in Rh :

– let j = min{|T.M |a, |S.Z|p)}
– remove j occurrences of a from T.M
– remove j occurrences of p from S.Z
– add j occurrences of b to S′.M
– add j occurrences of p′ to S′.Z

(4) See (5) since rules of type (4) can be treated as a special case of (5).

(5) For each rule a[
h
p|b]

h
→ c[

h
p′|d]

h
in Rh :

– let j = min{|T.M |a, |S.M |b, |S.Z|p)}
– remove j occurrences of a from T.M
– remove j occurrences of b from S.M
– remove j occurrences of p from S.Z
– add j occurrences of c to T ′.M
– add j occurrences of d to S′.M
– add j occurrences of p′ to S′.Z

(6) For each rule [
h
p|]

h
→ [

h
p′|]

h
[
h
p′′|]

h
in Rh :

if p ∈ S.Z then begin
– remove p from S.Z
– if i = 1 then add p′ to S.Z ′ else add p′′ to S.Z ′

– skip all other rules of type (6)
end
/* Observe that the contents of the membrane S is unchanged during the
division as S′ represents only one of the two resulting copies */

Complexity of the simulation procedure

We specify the consumption of resources (namely the computational space)
required to solve an instance of a size s of a decision problem. Let the instance be
solved by a confluent P system Π = (O, P, µ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, i0)
of a size sO(1), a member of a semi-uniform family. A result of its computation
can be calculated with the aid of the function State. One can subsequently cal-
culate State(i0, n), until the object yes appears in this membrane or until the
computation halts. Halting can be tested by computing State(h, n) for all the
membranes h which could potentially exist after n steps, n = 0, 1, 2, . . . , until
no rule can be applied in any of them. We determine the space complexity of
the function State. Let

d be the depth of the initial membrane structure tree µ,
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q = card(O),
on denote the number of objects within the system after n steps. Hence,
o0 = |w1|+ . . . + |wm|.

By the assumption, the values of m, d, q and log o0 are bounded from above by
sO(1) (which is the initial size of Π). In the rest of the proof we treat them as
constants as they are fixed for a given Π. Evaluating on, one observes that the
number of objects can increase only during the membrane can division, and their
number after n steps is bounded by the expression m(2d)n (if each membrane
except the skin is at every step divided). Hence the total number of the objects
in the system is

on ≤ o0m(2d)n.

The maximal number of objects in a single membrane grows exponentially,
too, as all can eventually concentrate in the same membrane. The space (in bits)
necessary to store the contents of an arbitrary membrane after n steps is

bn ≤ q⌈log on⌉ ≤ q⌈log(o0m)⌉+ qdn = c0 + c1n (18)

for positive constants c0 and c1 of size sO(1).
Functions State, Parent and Contribution from children with a param-

eter h[i11 . . . ikn] store the following information:

1. a specification of membrane h[i11 . . . ikn] which requires kn + ⌈log m⌉ bits,
2. variables as S, S′, T, T ′ which store the content of membrane h[i11 . . . ikn] (or

its parent/child) and each of which requires at most bn bits.

We do not need to consider parameters passed to procedures Try rules X as all
the structured parameters S, S′, T, T ′ are passed by reference.

Denote the space complexity of the functions Contribution from children

and State with the parameter h[i11 . . . ikn] by C(n, k) and S(n, k), respectively.
Observe that this complexity does not depend on a particular membrane h but
solely on the values of n and k. The structure of mutual calls of these procedures
and the variables they use correspond to the following recurrences:

S(0, k) = b0, 0 ≤ k ≤ d (19)

S(n, 0) = max{C(n, 0), S(n− 1, 0)}+ 4bn + c, n ≥ 1 (20)

S(n, k) = max{C(n, k), S(n− 1, k), S(n− 1, k − 1)}

+ 4bn + kn + c, n ≥ 1, 1 ≤ k ≤ d (21)

C(n, d) = 0 (22)

C(n, k) ≤ max{C(n, k + 1), S(n− 1, k + 1)}+ 4bn + n(k + 1) + c,

0 ≤ k < d, n ≥ 0 (23)

By expanding (23) to a series for k, k + 1, . . . , d we obtain

C(n, k) ≤ max{S(n− 1, i) | k < i ≤ d}+O(d2n + dbn) (24)
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for 0 ≤ k ≤ d, n ≥ 0. Let us define

S(n) = max{S(n, k) | 0 ≤ k ≤ d}. (25)

By (24) and (25) we can rewrite (21) in the form

S(n, k) ≤ max{S(n− 1) +O(d2n + dbn)}+O(bn + kn),

n ≥ 1, 1 ≤ k ≤ d (26)

By substituting S(n, i), i = k − 1, k − 2, . . . , 0 with (26), we can expand (26) as
follows:

S(n, k) ≤ max{S(n, k − 1), S(n− 1) +O(d2n + dbn)}+ 2O(bn + kn)
≤ max{S(n, k − 2), S(n− 1) +O(d2n + dbn)}+ 3O(bn + kn)

...
≤ max{S(n, 0), S(n− 1) +O(d2n + dbn)}+ (k + 1)O(bn + kn)
≤ max{C(n, 0) + 4bn + c, S(n− 1) +O(d2n + dbn)}+O(kbn + k2n)
≤ S(n− 1) +O(d2n + dbn).

The next-to-last step was done by substituting S(n, 0) with (20). In the last step
we substituted C(n, 0) with (24) and (25). Therefore, the recurrence (19)–(21)
can be rewritten with the aid of (25) as follows:

S(0) = b0

S(n) ≤ S(n− 1) +O(d2n + dbn)

A solution to this recurrence is S(n) = O(d2n2 + ndbn). Recall that d = sO(1),
where s is the original instance size. By (18) we get

S(n) = (sn)O(1). (27)

If we assume that Π is polynomial time-bounded, we obtain also n = sO(1). After
substituting to (27) one can conclude that the simulation is done in PSPACE.
2

If we put together Theorems 2 and 1, we obtain the parallel computation thesis
for semi-uniform families of confluent P systems with proteins on membranes:

Corollary 1. PMCS
MP = PSPACE.

5 Discussion

We have shown that semi-uniform families of P systems with proteins on mem-
branes can solve in polynomial time exactly the class of problems PSPACE.
Therefore, they are computationally equivalent to other parallel computing model
as PRAM or alternating Turing machine. We conjecture that the same result
holds with regards to uniform families of P systems but no formal proof is known
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yet. Possibly a construction similar to that in [2] could be used to solve this prob-
lem. Also the characterization of power of non-confluent P systems with proteins
membranes remains open. The presented proof cannot be simply adapted to this
case by using a non-deterministic Turing machine. The reason is that we cannot
store non-deterministic choices of such a P system along a chosen trace of com-
putation, as this would require an exponential space. Therefore, we do not know
what is the power of non-confluent P systems with proteins on membranes.

A similar result has been previously shown in [11] for the case of P systems
with active membranes. Therefore, taking into the account another results of this
kind related to other types of natural or molecular computing, one could suggest
that the class PSPACE represents natural characterization of deterministic nat-
ural computations. It is important to note that certain operations used in P sys-
tems with proteins on membranes, as the division of non-elementary membranes,
seem to have in practice very limited scalability, on one hand. On the other hand,
certain properties of biocomputing models, as the massive parallelism, minimal
energy consumption, microscopic dimensions of computing elements etc. makes
it very attractive to seek for ways how to harness the micro-biological machinery
for algorithmic tasks.

Among further problems we mention restricted variants of the P systems with
proteins on membranes. How would the computational power of (semi)uniform
families of such systems change if only certain types of rules were allowed?
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