The M system M_{bac} is supported by a polytopic tile system in \mathbb{R}^3 , defined as $T_{bac} = (Q, G, \gamma, d_g, S)$, where

- Q contains the following tiles:
 - oct_base: octagonal seed tile with edges of length 4; all edges are connectors with glue g90o and connecting angle 90° ;
 - **oct_small:** octagonal tile with edges of length 2, serving as a central part of the septum; all edges are connectors with glue g180s and angle 180° ; there are two more point connectors at the center of the tile: one inside, with glue gt90 and angle 90° , and another outside, glue gt60 and angle 20° ;
 - *trapezoid*: trapezoidal tile with the outer edge of length 4 and connector c_4 , and the inner edge of length 2 and connector c_2 :
 - c_4 : glue g90o, angle 90°;
 - c_2 : glue g180t2, angle 180°;
 - **rectangle:** square tile with edges of length 4 forming shells of cell-like shapes; two opposite edges are connectors c_1, c_3 defined as follows:
 - c_1 : glue g90, angle 90^o ;
 - c_3 : glue g180h, angle 180^o ;
 - *inner_rod1*: 1D rod of length 0.2, attaching to the inside center of a small octagon using end connector with glue gr90 and angle 90° ; and with another connector at the opposite end, glue gx90 and angle 0° , to attach *inner_rod2*;
 - *inner_rod2*: 1D rod of length 0.02, attaching to *inner_rod1* using end connector with glue gy90 and angle 0° ;
 - **outer_rod:** 1D rod of length 16, attaching to the outside center of a small octagon using end connector with glue gr60 and angle 60° ; it helps to keep spatial distance of cells during the fission process.
- $G = \{gx, ge, g90o, g90, g180h, g180s, g180t2, gr90, gt90, gx90, gy90, gr60, gt60\};\$
- $\begin{array}{l} \gamma \ = \{(g90o,g90),(g90,g90o),(g180h,g180h),(g180t2,g180s),(gt90,gr90),(gx90,gy90),(gt60,gr60)\}; \end{array}$
- $d_g = 0.001;$
- $S = \{oct_base\}.$

The whole M system is then defined as $M_{bac} = (F, P, T_{bac}, \mu, R, \sigma)$ where

- F contains floating objects a, s with radius 0.05, mobility 10 and concentration (per cubic unit) $\epsilon(a) = 0.025$ and $\epsilon(s) = 0$;
- $P = p_0;$

 T_{bac} is the polytopic tile system defined above;

- μ places one protion p_0 at the center of each tile *rectangle*;
- R contains the following rules:

Creation rules produce tiles while consuming floating objects a (nutrients):

 $a \rightarrow oct_small;$ $a \rightarrow rectangle;$ $a \rightarrow trapezoid;$ $a \rightarrow inner_rod_1;$

- $a \rightarrow inner_rod_2;$
- $a \rightarrow outer_rod;$

Destruction rule $a, outer_rod \rightarrow \emptyset$

(destroys the auxiliary tile *outer_rod* when it is no longer needed);

Division rule $g180h \xrightarrow{s} g180h \rightarrow g180h, g180h$

(divides two tiles connected by a pair of g180h glues, consuming one floating object s);

Metabolic rule $a[p_0 \rightarrow [p_0 a$

(transports a floating object a through protion channel p_0 into a cell where it is used to produce septum and auxiliary tiles);

 $\sigma(gx90, gy90) = \{s, s, s, s, s, s, s, s, s\}.$