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Abstract. Morphogenetic system (M system) is an abstract model mo-
tivated by key aspects of morphogenetic phenomena such as self-assembly,
growth, homeostasis, self-reproduction and self-healing of evolving sys-
tems. Its original purpose is the study of these phenomena, both the-
oretically and by experimentation, at a computational level abstracted
from a biological implementation. Application in biological modeling and
research is also worth considering.
Mathematically, M systems rely on basic principles of membrane com-
puting and self-assembly, as well as explicit emphasis on geometrical
structures (location and shape) in 3D (or generally, dD) Euclidean space.
Theoretical studies have shown that M systems are computational uni-
versal, as well as efficient in solving difficult NP problems. Moreover,
they have also shown robustness to injuries and self-healing capabilities
through extensive computer simulations of specific M systems modeling
self-reproduction of a model of a basic eukaryotic cell.
As computer simulations play a crucial tool in study and applications
of morphogenetics, we have developed a software package to implement
M systems in silico. It consists of two modules, a simulation engine and
a visualizing tool based on the Unity game engine. Due to the key role
of geometry and self-assembly, we were unable to use known P systems
modelling libraries, such as the P-Lingua. In this paper we present exam-
ples of its functionality and range of applications, and compare it with
other simulators used in research of P systems.

1 Introduction

A morphogenetic (M) system is a formal model intended to address the gen-
eral question of whether morphogenesis and its characteristic properties (such
as internal dynamical homeostasis, self-reproduction, and self-healing) can be
meaningfully understood from the perspective of information processing, at some
level of abstraction. The potential importance of morphogenesis for information
sciences was recognized already by Alan Turing in [14], by focusing on a pos-
sible mechanisms underlying memory pattern formation and their resilience in
biological organisms.

Among recent attempts to address these questions we mention membrane
computing [9] and virtual cells [13]. However, these models assume cell as an



atomic assembly unit of an abstract nature, while M systems construct a devel-
opmental structure from 1D or 2D primitives allowing for gradual self-assembly
of 3D (multi-)cell-like forms. The fundamental ingredient of P systems is the
membrane that separates a virtual cell from the external world or the various
parts within it. M systems enrich this concept with spatial relationships and
constraints in the organization of biological systems, including the role of geo-
metric shape and form. A survey of results in membrane computing specifically
related to morphogenesis ca nbe found in the introductory section of [11].

To implement space and geometry in M systems, we have employed and
generalized another bio-inspired approach – abstract tile assembly, originated
in DNA computing [5,15]. The resulting model of M systems demonstrated its
computational universality (in the Turing sense), and also its computational
efficiency in solving NP-hard problems in probabilistic polynomial time. Fur-
thermore, its resistance to injuries and its self-healing capability has been theo-
retically confirmed in [11]. On the other hand, computational experiments [12]
[11] have proven the ability of M systems to reflect, to some degree, the corre-
sponding macroscopic observables of growth of biological organisms (indepen-
dently of whether they faithfully describe factual atomic processes in biological
organisms), while maintaining their computational feasibility. To carry out these
experiments, we have implemented a software environment capable of simulating
M systems. The environment was named Cytos, as the first experiments aimed
at simulation of the cytoskeleton growth and its regulatory role in cell fission.

In this paper we describe the implementation and use of the Cytos package
which consists of a simulation engine and a visualization tool powered by the
Unity game engine. In Section 2 we summarize basic design principles and the
structure of M systems. Section 3 introduces our simulation engine Cytos and
examples of its use, with input in various formats. Section 3.5 focuses on the
visualization tool, while Section 4 contains visualized examples of simulation
of three M systems. A comparison with some other simulation packages (such
as the P-lingua and MeCoSim) used in P systems research is made in Section
5. Finally, in Sec. 6, we discuss the results and present some open questions
concerning further improvements of Cytos.

2 Morphogenetic systems

This section summarizes the definition of an M system and their basic properties.
The reader is referred to [11,12] for a complete specification and other examples.

M systems partially rely on the concept of P systems with “proteins” on
membranes [8] but, to distinguish the latter from biological proteins, the anal-
ogous term “protion” was is used in the framework of M systems. Thanks to
the extension with explicit geometric features and self-assembly, an M system
unfolds in a dD Euclidean space Rd in discrete time steps, although here we will
assume 3D space throughout. There are three types of objects present in the
system: protions, tiles and floating objects.



Floating objects are small shapeless atomic objects floating freely within the
environment, although they have nonzero volume and a certain specific posi-
tion in space at every moment. They can be carried through protion channels
and participate in mutual reactions with other types of objects.

Tiles have a predefined size and shape, together with a specified position and
orientation in space at every time. Tiles can stick together (assemble) along
their edges or at selected points called connectors and covered with glues.
Their connection is controlled by a pre-defined glue relation and connecting
angle.

Protions are placed on tiles and, apart from acting as protion channels letting
floating objects pass through, they can also catalyze their reactions.

Unlike typical membrane systems, membranes are not present at the outset.
even implicitly. However, they can be self-assembled from tiles and more atomic
components during the morphogenesis of the M system. Connected tiles can be
also become disconnected and/or be destroyed under certain conditions specified
by the rules defining their interactions in the M system.

2.1 Polytopic tiling

A basic element of the tiling is a d-dimensional tile shaped as a bounded convex
polytope (d-polytope) [16], with faces of dimension d−1, called facets, separating
them from the exterior. A polytope is the convex hull of an ordered list of its
points extreme points in Rd, called its vertices. Formally, an m-dimensional tile
is defined as

t = (∆, {c1, . . . , ck}, gs), for k ≥ 0, where

∆ is a bounded convex m-polytope,

c1, . . . , ck are its connectors,

gs ∈ G is the surface glue, where G is a finite set of glues.

Connectors define possible attachments of the tile to other tiles. Informally,
a connector is a site on the surface of a tile specified by its shape, glue and
connecting angle. A connector may be shaped as a point, a segment or a polygon.
Generally, two connectors on neighboring tiles can connect together if they have
identical shapes and their glues match in the glue relation defined bellow.

Definition 1. A polytopic tile system in Rd is a construct T = (Q,G, γ, dg, S),
where

Q is the set of tiles of dimensions ≤ d;

G is the set of glues;

γ ⊆ G×G is the glue relation;

dg ∈ R+
0 is the gluing radius (assumed to be small compared to tile sizes);

S is a finite multiset of seed tiles from Q randomly distributed in space.



2.2 M system

Growth in an M system is determined by the geometrical structure of its under-
lying polytopic tile system. Unlike ordinary tiling assembly systems, new tiles
attaching to an existing structure are not present in an arbitrary quantity, but
can only be created by the application of rules of the M system to more elemen-
tary objects available in its environment. Formally, for a finite alphabet O we
denote by O∗ the free monoid generated by O by the operation of concatenation,
with identity element λ. As usual, O+ = O∗ \ {λ}. A multiset S over alphabet
O can be represented by a string x ∈ O∗ such that |x|a = |S|a. For a string or
multiset S and a ∈ O, |S|a denotes the multiplicity of occurrences of a in S.

Definition 2. A morphogenetic system ( M system) in Rd is a tuple

M = (F, P, T, µ,R, σ),

where

F = (O,m, ρ, ε) is a catalogue of floating objects, where

O is a set of floating objects;
m : O −→ R+ is the mean mobility of each floating object;
ρ : O −→ R+

0 specifies the radius (of interaction) of the floating objects in
O;

ε : O −→ R+
0 likewise gives the (initial) concentration of each floating object

in the environment;

P is a set of protions;
T = (Q,G, γ, dg, S) is a polytopic tile system in Rd, with O, P, Q, G all pairwise

disjoint;
µ is the mapping assigning to each tile t ∈ Q a multiset of protions placed on

t together with their positions: µ(t) ⊂ P × ∆ where ∆ is the underlying
polytope of t;

R is a finite set of reaction rules;
σ : γ −→ O∗ is the mapping assigning to each glue pair (g1, g2) ∈ γ a multiset

of floating objects which are released to the environment when a connection
with glues (g1, g2) is established.

A reaction rule from the set R has the form u → v, where u and v are
strings/multisets which may contain floating objects, protions, glues and/or tiles
as specified below. A rule u → v, is applicable when each floating object o ∈ u
is located within the radius m(o) from the reaction site, and eventual further
conditions specified by the rule type are also met. Reaction rules can be of four
types: metabolic, creative, destructive and dividing.

Metabolic rules
Let u, v ∈ O+ be non-empty multisets of floating objects and p ∈ P be a protion
placed on a tile.



Type Rule Effect
simple u→ v objects in multiset u react to produce v

catalytic pu→ pv objects in u react in presence of p to produce v;
u[p→ v[p this variant requires both u, v at the side “out”;
[pu→ [pv this variant requires both u, v at the side “in”;

symport u[p→ [pu passing of u through protion channel p
[pu→ u[p to the other side of the tile

antiport u[pv → v[pu interchange of u and v through protion channel p

Creation rules u→ t,
where t ∈ Q and u ∈ O+, can create a tile t while consuming the floating objects
in u. Furthermore, t must be able to connect to an existing fixed object at some
of its connectors.

Destruction rules ut→ v,
where t ∈ Q, u, v ∈ O+ would destroy a tile t, while consuming the floating
objects in u and producing floating objects in v.

Division rules g u h→ g, h,
where g h is a pair of glues on connectors of two connected tiles, and u ∈ O+.
As an effect of the application of the rule, the two connectors disconnect and
the multiset u is consumed.

Computation of the M system
A configuration of an M system is determined by

– the set of all tiles in the environment and their relative positions;

– an interconnection graph of connectors on these tiles;

– positions for all floating objects modulo their mobility.

Configurations with any two objects (tiles or floating objects) in the same or
overlapping positions in space are not allowed. The initial configuration contains
only (unconnected) seed tiles in S and a random distribution of floating objects
given by a concentration ε0.

An M system transits from configuration to configuration in discrete time
steps by applying rules in its set R. At each step, each floating object can be
subject to at most one rule, each connector can be subject to at most one creation
or division rule, and each tile can be subject to at most one destruction rule. The
rules are chosen and applied in a maximally parallel manner. Finally, each float-
ing object o changes randomly its position according to the Maxwell-Boltzmann
distribution with mean mobility m(o).



3 Cytos - simulator of morphogenetic systems

This section briefly describes the M systems simulator called Cytos, its basic
modules and main functionality. Architecture of the system is divided into sep-
arated modules which cooperate to produce simulation results. The goal of this
motion is to make the dynamics of M systems more likely to reproduce macro-
properties observed in actual phenomena being modeled, while preserving their
computational feasibility. (The Boltzmann distribution is a well know physical
models of particle random diffusion in a gas or liquid [4].)

A modular architecture has been chosen for simpler development and main-
tenanc. Cytos consists of two main modules, namely the simulation and the
visualization engine, the visualization module being described in section 3.5 be-
low. The simulation engine is built as a standalone Microsoft Windows DLL
(Dynamic Link Library) with a friendly and well described API (application
programming interface). The definition of a target M system M is expected by
the simulation engine in XML format. The output consists of a (discrete) se-
quence of states of the system M after a pre-specified number of simulation
steps. Each state consists of full information about changes in the previous state
in that step. This information is then fed to the visualization engine.

All modules are covered in a single application with a simple user interface
called Cytos. The package affords full functionality needed for a variety of ex-
periments since it is intended to be a universal simulation tool for M systems,
as given by their definition. Figure 1 shows a dependency graph of the mmajor
components of Cytos. All components (modules) are written in C# and .NET
4.5.2 (more about these modules below.) The hole project is going to be publish
under Open source license, however right now we offer only pre-packed binaries
available at http://sosik.zam.slu.cz/msystem/. Later this year we are plan-
ning to release an M System simulation engine as a standard NuGet package.

Fig. 1. Dependencies among Cytos’s major components.

http://sosik.zam.slu.cz/msystem/


3.1 Input and output formats

M systems have been formalized in Def. 2. From an implementation standpoint,
they need to be translated into XML format. This XML file must give a full spec-
ification used as an input for Cytos, called M system description. Valid XML
format is covered in an XSD scheme used for XML validation. The M system
definition has two parts - tiling (contains tiles, glues, glue relations and ini-
tial objects) and Msystem (contains floating objects, proteins, proteins on tiles,
evolution rules and signal objects). The output file produced by the simulation
engine is also in XML and it is called the Snapshot file. It contains discrete
computational steps with simulation objects, their positions and states (create,
destroy), serving as flags for visualization (an object should be created or erased).

3.2 Cytos

Cytos offers an intuitive and user-friendly user interface (UI.) It is a thin layer
over the simulation engine, contains all the functionality required for interaction
with the package and is connected with the simulation engine using its own API.
This engine is intended to handle simulations of any M system for any project.

Fig. 2. Cytos main screen.

Figure 2 shows the splash screen of the UI and cosists of two parts. The
right pane of the window contains a de-serialized M system description with all



parameters loaded from the input XML. Users can easy search through it using
the text box located in the upper right corner; the left pane is an output console
to visualize results of different actions, such as de-serialization or simulation
runs.

File The main menu offers the user the following options:

– New M system – opens window (module M System creator) for creating
a new M system description;

– Load M system – loads a description (in XML) of the M system under
simulation;

– Save snapshot – saves computation steps done by simulation to XML,
as defined above;

– Visualize snapshot – opens visualization of the current state of the sys-
tem;

– Open log file – opens basic log file;
– Open simulation log file - opens special simulation log, which contains in-

formation about the rules selected for application, number of simulation
objects and other information collected in the course of the simulation.

The [Run] menu allows users to start a simulation run and define the number
of simulation steps.

3.3 M system creator

An M system description need to be specified in XML format. Although Cytos
disposes of XSD scheme (and also XSD validation functionality) for the input
XML, it may be cumbersome to find and handle M system properties by direct
editing of the XML. For this reason, we have created the module M system
creator. The Creator contains a clickable GUI for all simulation objects like
tiles, glues, floating objects, proteins and also for all types of rules. For each
object there is an example, self-validation functionality and useful hints. Users
also see the raw XML and they may modify it within Creator application.

3.4 Simulation engine

The simulation engine is the most important and also the most complex mod-
ule in Cytos. Its functionality is encapsulated into one DLL and it offers all
necessary methods for simulation, ranging from input de-serialization to out-
put serialization. The greatest advantage of an independent simulation engine
is the possibility to use it in various projects. As a standalone DLL, the engine
communicates with other modules through API which provides public methods,
properties and events. For a programmer who uses this engine it is not neces-
sary to know how the simulation works, he simply uses data provided by public
methods exposed by the API. The main idea is to have a single package that
can be repeatedly used “as is” – build easily applications with different purposes
powered by the same simulation engine.



Fig. 3. M system creator - editor to enter the description of a target morphogenetic
system.

The M System explicit factors in geometric features. Computing of these fea-
tures is handled with two mathematical libraries – Math.NET Numerics provides
methods and algorithms for numerical computations, and Math.NET Spatial for
geometry processing. Math.NET is a pack of open-source numerical libraries
written in C# and F#.

3.5 Visualization using TM

In this project, we made use of the cross-platform game engine Unity devel-
oped by Unity Technologies to visualize the output from the simulator. This
engine can be used to create a two-dimensional or three-dimensional environ-
ment. Furthermore, when an environment is created, it also allows to create a
logical layer using the C# programming language. We have chosen Unity for its
easy processing, control and availability (free for non-commercial projects).

CytosV is the visualization part of the project that handles the snapshot file
from the Cytos app. In CytosV we can take full advantage of the C# language.
There are two ways to run CytosV :

1. Run it directly from Cytos where we pick from “File Menu” action “Visualize
snapshot”. At that moment, Cytos exports the snapshot file to a temporary
folder and runs CytosV with parameter path to the temporary snapshot file.

https://numerics.mathdotnet.com/
https://spatial.mathdotnet.com/
https://www.mathdotnet.com/


2. Run CytosV from the standalone file CytosV.exe located in the same folder
as the whole simulator, and use keyboard shortcut Ctrl + O for open file
dialog when choosing an exported snapshot file.

Visualization control

The UI uses these main keyboard shortcuts:
– Ctrl + O: Load snapshot file (.xml);
– Ctrl + F1: Show help on screen;
– Ctrl + R: reset environment and turn to first step
– Esc: Close application;
– W: Go straight;
– A: Turn left;
– S: Turn back;
– D: Turn right;
– Left arrow: previous step;
– Right arrow: next step;
– Mouse: Looking around.

Generating simple shapes in 2D and 3D Unity allows to create 2D or 3D
objects using so-called assets (3D objects, sounds, textures). There are several
ways to generate objects in Unity: either by using empty objects or predefined
objects.

Fig. 4. Unity editor – rendered object pentagon.

When we create objects from an empty object (as in Fig. 4), we need add to
this object two important components. The first component is the Mesh Ren-
derer which we use for texture or color on this object. The second one is the
Mesh Filter used for modeling in 2D or 3D. A problem with 2D objects in a
3D environment is that the texture is only visible from one side. If we want to



Fig. 5. Unity editor – standard object cylinder.

display the texture from the other side, we must create a copy of this object and
rotate it 180◦.

In 3D, we can create simple predefined object like spheres, capsules, cubes,
cylinders (Fig. 5) or other objects. In Cytos we can use both types of objects.
Tiles are rendered on a mesh. In this way, we can render any 2D object like
square or pentagon with which we can assemble a 3D object in an environment,
such as the dodecahedron shown in Fig. 6. Floating objects in a 3D environment
can use standard objects in Unity, like spheres, capsules or cubes.

Fig. 6. Unity visualization of a dodecahedron assembled from twelve pentagons.



Preprocessing a snapshot file The process starts by loading the snapshot file
into the visualization engine. Once the file is loaded, the total number of steps in
the snapshots is calculated. Each snapshot element contains a stepID parameter
that specifies an individual step of the simulator. Subsequently, individual steps
of simulation are visualized and stored. For example, to create a tile, we need
supply the following information:

– Name – specifies the tile name;
– objectID – specifies its unique ID in space;
– type – type of object;
– state – the state of the object (Create, Move, Destroy);
– vertices – determine the points of a given tile in space;
– color – specifies the color of an individual object (RGBA).

An appropriate graphic action is chosen depending on the action to be per-
formed on the object. For example. say ”Create”, create an nstance of the tile
in the environment. An empty object is created with two components (Mesh
Renderer and Mesh Filter). Mesh Filter is used for object created from its ver-
tices. Mesh Rendered defines the color texture for the object using attribute
called color with alpha value. For the action state=”Move”, the original object
is searched for in the environment and then regenerated and displayed in its new
position. For the action state=”Destroy”, the object is searched for in environ-
ment and then erased. Hence, we have to render all steps subsequently from the
beginning to the desired step. For example, in order to properly render step 4,
this step is created by summing actions in all the previous steps (1, 2, 3, 4). This
is important for backward stepping in the visualization.

<snapshot stepID=”0”>
<f l o a t i n g O b j e c t s />
<t i l e s >
< t i l e name=”q0” objectID =”0” type=” t i l e ” s t a t e=”Create”>
<v e r t i c e s>
<vertex>
<posX value =”0” />
<posY value =”10” />
<posZ value =”0” />

</vertex>
<vertex>
<posX value =”9.51056516295153” />
<posY value =”3.09016994374947” />
<posZ value =”0” />

</vertex>
<vertex>
<posX value =”5.87785252292473” />
<posY value =”−8.09016994374947” />
<posZ value =”0” />

</vertex>



<vertex>
<posX value =”−5.87785252292473” />
<posY value =”−8.09016994374948” />
<posZ value =”0” />

</vertex>
<vertex>
<posX value =”−9.51056516295154” />
<posY value =”3.09016994374947” />
<posZ value =”0” />

</vertex>
</v e r t i c e s>
<c o l o r name=”4000 b f f f ” />

</ t i l e >
</ t i l e s >
</snapshot>

Listing 1. An example of snapshot description of a pentagonal tile in the environment.

4 Examples of simulations in Cytos

In the above paragraphs we have described all important parts and modules of
Cytos. This part intends to give the reader answers how to write basic and also
move complex simulation examples, how to create different system behaviors
and how to visualization results in different steps.

4.1 Boxy hallows

The first and the simplest example is the so called “Boxy hallows” (inspired
by a scene from the Harry Potter movie). The desire behavior is to create self-
reproducing 3D boxes built from six 2D squares. Once the box is completed, it
spits into two parts and these parts again complete themselves into boxes. This
process repeats until environmental resources are eventually exhausted.

Each side of the box consists of the same tile d. The tile is defined by 4 sides
and 4 vertices, each side containing the same glue g1 and the connection angle
90o. Due to the presence of a single glue, the glue relation used for connecting
is obviously g1-g1. We also use only one type of floating object a with a high
concentration which is used for creating tiles d.

The dynamics of the model is controlled by just two rules. The creation rule
( a → d) consumes one floating object a and it creates tile d. The division rule
(g1 a g1 → g1, g1) divides glue relation g1-g1 while consuming one floating
object a. The initial object is one tile d, placed in the environment. Creation
rule is applied in the maximally parallel way until the first box is created, then
the division rule is used and the process is repeated.

The figure 7 bellow shows the process of creating boxes in simulation steps
1, 2, 4 and 11. Step 1 is the initial configuration, step 2 shows parallel creation



of four sides of box, and the division rule is applied on already created box in
step 4. Step 11 is just for illustration how the process continues in a later phase,
producing an exponential growth of boxes.

Fig. 7. Visualization of creating boxes in the simulation example “boxy hallows”.

4.2 Cytoskeleton-controlled cell division

The second example is a model of cell-like shapes imitating, on a visual level,
development of eukaryotic cells with nuclei enclosed in nuclear membranes. Both
“cells” and their nuclei are shaped as dodecahedrons consisting of 12 pentagonal
tiles. Furthermore, division of these “cells” is controlled by cytoskeleton growth.
The division process is triggered by a physical contact of the growing cytoskeleton
and nuclear membrane. Although the control of the process and its geometry is
nontrivial, the model is described by only 16 local interaction rules. A detailed
description of the model and the applied rules is available at http://sosik.

zam.slu.cz/msystem/ or bmc.memphis.edu/cytos.

The simulation start with an initial object which is one large pentagon tile.
Gradually, the first cell with nucleus is formed and the cytoskeleton starts to
grow inside, After a certain phase of growth, the cell (and its nucleus) divides and
the process repeats again, consuming environmental resources – floating objects.
Figure 8 illustrates the process of cell growth simulation in steps 1, 5, 12, 13,
32. Step 1 contains initial configuration (one large pentagon tile), step 5 shows
a complete cell with its nucleus (small red dodecahedron) and interconnecting
parts of nucleus. Step 12 shows beginning of the division process of cellular
membrane in the environment (black lines). Steps 13 shows a new cell and step
32 demonstrates a part of a growing population of cells. Interestingly enough,
the paper [11] demonstrates that the model exhibits properties of robustness and

http://sosik.zam.slu.cz/msystem/
http://sosik.zam.slu.cz/msystem/
bmc.memphis.edu/cytos


self-healing, and it is able to develop even under substantial damages incurred
to its structure.

Fig. 8. Growth and division of cell-like forms with “nucleus”, where cell division is
controlled by a geometrical model of cytoskeleton.

4.3 Cell division with septum

The last example is a simulation of growth of prokaryotic cells without nuclei,
performing their fission with so-called septum. A septum is a new cell wall,
formed gradually between the two nucleoids. Septum extends gradually from the
periphery toward the center of the cell. When the new cell walls are complete,
the daughter cells separate.

As in the previous example, the cell growth and division consumes resources
(floating objects) from the environment, and an exponential growth of cell pop-
ulation continues until these resources are eventually exhausted. The cell fission
simulation is simplified in the sense that nucleoids are not included in the sim-
ulation, and the fission starts when the cell reaches certain “mature” size. The
resulting simulation model contains only 6 creation rules and one division rule.
Figure 9 illustrates selected phases of the simulation process, with the number
of simulation step indicated in the down left corner. Cells are formed as cuboids
with octagonal bases. The first image illustrates details of the septum, remaining
images depict various phases of cell fission process.



Fig. 9. Septum process

5 Other software simulating membrane systems

As there exist many different varieties of membrane systems, one can find also
many applications, programs or simulators. In this section we review a few of
them and make a brief comparison with Cytos and its functionality. We include
applications still under development or getting get regular updates. Also, we
want to point out a universal computation power of membrane systems on diverse
application.

With this purpose in mind, we chose applications from four different areas.
The first package is P-Lingua, a well known programming language for mem-
brane computing that also includes different tools such as core, compiler and
simulator. The second application is MeCoSim. MeCoSim is not a full package
but a GUI over a P-Lingua core that simplifies parsing input parameters and
generating result files. The third package comes from a completely other area. It
uses the power of graphic processing units (GPU) and its huge parallelism to sim-
ulate different processes using membrane computing. This GNU (General Public
License) project is called PMCGPU and it has been initiated by the Research
Group on Natural Computing (Department of Computer Science and Artificial
Intelligence, University of Seville). Finally, we mention the simulator Cyto-Sim
for stochastic simulations of cellular processes controlled by membranes and (not
only) peripheral proteins.



5.1 P-Lingua

P-Lingua is a programming language for P systems with active membranes. As
a programming language, it has its own syntax and grammar. A full description
of the latest version 4 can be found in [3]). Naturally, P-Lingua is released with
a parser, an interpreter and tools supporting its main functionality.

/∗ I n i t i a l c o n f i g u r a t i o n ∗/
@mu = [ [ ] ’ 2 ] ’ 1 ;

/∗ I n i t i a l m u l t i s e t s ∗/
@ms(2) = d{1} ;

/∗ Set o f r u l e s ∗/
[ d{k } ] ’ 2 −−> +[d{k} ]− [d{k } ] : 1 <= k <= n ;

{
+[x{ i , 1} −−> r { i , 1 } ] ’ 2 ;
−[nx{ i , 1} −−> r { i , 1 } ] ’ 2 ;
−[x{ i , 1} −−> #] ’2 ;
+[nx{ i , 1} −−> #] ’2 ;
} : 1 <= i <= m;

{
+[x{ i , j } −−> x{ i , j −1} ] ’ 2 ;
−[x{ i , j } −−> x{ i , j −1} ] ’ 2 ;
+[nx{ i , j } −−> nx{ i , j −1} ] ’ 2 ;
−[nx{ i , j } −−> nx{ i , j −1} ] ’ 2 ;
} : 1<=i<=m, 2<=j<=n ;

Listing 2. Example of P-Lingua, full code can be found here

The main component in P-Lingua is called the pLinguaCore and it is a soft-
ware framework for cell-like, tissue-like and spiking neural-like P system sim-
ulators. PLinguaCore contains a java library and, like Cytos, can be built-in
different applications. It is also released with its own translator for input P-
Lingua format or XML. There exist several applications which use pLinguaCore
and P-Lingua as a main core for simulation, for example MeCoSim [7].

All the examples described above currently use pLinguaCore for simulation.
PLinguaCore is a good programmable engine. Its main disadvantage is that all
new P system modifications must be firstly implemented there and after that it
could be used for a new P system model (or one must implement a new single
purpose simulator). In many cases, these new models just use some new regu-
lation or triggering mechanism for an advanced control of multiset operations
taking place in its compartments. Therefore, the basic philosophy of P systems
(abstract membranes processing multisets of object by simple developmental
rules) is usually maintained.

http://www.p-lingua.org/wiki/images/a/a4/Sat_cell_division.pli


It is a question whether it would be possible to create a platform based on
these atomic operations, but still on a higher level than a universal programming
language, which would able to cooperate and form hierarchically built applica-
tions implementing new P systems models. Another option might be to build
an API allowing to include some plug-ins into the pLinguaCore so that the user
could introduce new properties without the need to rebuild the whole applica-
tion.

5.2 MeCoSim

MeCoSim (Membrane Computing Simulator) was introduces as a universal sim-
ulation platform for membrane computing. The main goal was to create a fully
customizable tool, allowing users to generate custom simulators. As we know
from the preceding paragraph, MeCoSim core engine is a pLinguaCore imple-
menting several simulation algorithms for P systems. The latest MeCoSim re-
lease includes also the latest pLinguaCore in version 4.0 with support for spiking
neural P systems and tissue-like P systems with cell separation rules. However,
MeCoSim is still dependent on functionality of pLinguaCore and thus its capa-
bility is restricted to the P system modifications implemented in pLinguaCore
[7,6].

MeCoSim offers two different user roles: design user and end user. A design
user is responsible for defining, debugging and validating the model. An end user
creates experiments over the given ecosystem. This partitioning allows users to
focus on specific tasks and area of interests [6].

5.3 PMCGPU

PMCGPU is a package that can handle two completely different areas of research.
The first one is the membrane computing and bio-inspired computation and
the second one is the massive parallel computation on graphic processing units
(GPU). Unlike pLinguaCore and MeCoSim, PMCGPU project is written mainly
in C/C++ with use of the CUDA architecture.

CUDA (Compute Unified Device Architecture) is a hardware and software
architecture developed by nVidia. The main advantage of CUDA is the ability
to run instructions in parallel on a GPU. The platform is accessible via the
CUDA-accelerated libraries and developers can find it online at the url https:
//developer.nvidia.com/gpu-accelerated-libraries.

One of the key attributes of membrane computing is parallel computation and
therefore the use of GPU for computation is a promising approach. As MeCoSim,
also PMCGPU uses pLinguaCore for simulation. Although pLinguaCore is a se-
quential simulator, PMCGPU project handles it in a parallel way. The solution
is based on mapping the double parallelism of P systems over the double paral-
lelism of CUDA. Each membrane of the system has assigned a block of CUDA
threads and each thread is responsible for one object in the membrane. Using
this approach, it is possible to run pLinguaCore in a highly parallel fashion, for
details please visit https://sourceforge.net/projects/pmcgpu/.

http://www.p-lingua.org/mecosim/
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://sourceforge.net/projects/pmcgpu/


5.4 Cyto-Sim

Cyto-Sim is a stochastic simulator of membrane-enclosed hierarchies of biochem-
ical processes. Its underlying formalism is based on the theory of membrane sys-
tems extended to newly defined membrane systems with peripheral and integral
protein. The simulator was introduced in [1] and, to demonstrate its potential,
applications to model a circadian clock and the G-protein cycle in yeast saccha-
romyces cerevisiae have been presented. Further details of the simulator function
and implementation have been described in [2] and [10].

The description of a modelled system and the internal logic of the simula-
tor is based on formal language theory and has been shown to have decidable
properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition
to simulation. The simulator provides variable levels of abstraction via arbitrary
chemical kinetics which link to ordinary differential equations. The simulation
itself is stochastic, using Monte Carlo methods.

The simulator is written in J#, which is part of the .NET framework, and it
allows, therefore, porting to both Java and C#. A specific syntax for description
of a simulated biological system has been defined. In addition, Cyto-Sim sup-
ports models described as Petri nets, can import all versions of SBML and can
export SBML and MATLAB m-files. One can find similarities with the Cytos
simulator as, for instance, both simulators use an underlying formalism based
on the formal language theory and both use stochastic simulation approach.
There are also significant differences in their purpose as, e.g., Cyto-Sim does not
support directly geometrical features of the modelled system.

6 Conclusions and Future work

In this the paper we have introduced a software package Cytos as a simulation
tool for morphogenetic (M) systems with graphical output. En route, We have
briefly reviewed the model of morphogenetic systems intended to capture com-
putational and algorithmic aspects of morphogenetic phenomena, as observed in
biological organisms. The M model partially relies on P systems with proteins on
membranes, but fundamentally extends it with self-assembly capabilities, where
geometry (shape and position) features play an important role.

We have described the Cytos architecture, its two main modules, the simula-
tion engine and the user interface and its key functionality to provide a platform
to explore and understand arbirary M systems. Data from the simulation engine
are presented to users using a cross-platform game engine Unity that visualizes
all objects in the 2D or 3D environment of the M system. The visualization uses
so-called snapshot XML files to describe basic parameters and visual description
of one simulation step.

Finally, we have provided a brief comparisons with some existing tools for
membrane computing. For instance, Cytos and pLinguaCore offer many similar
functionalities. One can note that, as a formal programming language, P-Lingua
requires some training for a novice user, on one hand. On the other hand, Cytos



is more like a tool for describing biological processes with simple properties,
with the M system creator providing intuitive user interface where the whole
description of an M system can be created without further knowledge. It should
be noted, however, that the M systems formalism is more complex than that of
many P system models, due to the geometrical features included in the model.

As the next steps in the development of Cytos, we would like to improve the
visualization in order to show smooth movement of individual objects, including
smooth growth of new objects. Further, we would like to rework the overall
pre-processing of each step, where we want to optimize loading of the snapshot
file and faster start of the simulations. We would also like to transfer this entire
project to the web environment to reach more variability and comfort for remote
users. Another goal is to incorporate the Cytos simulation engine into the Unity-
based visualizer so that we could be able to visualize every step “on the fly” (in
real-time) during the simulation.
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